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Spheromak Power and Helicity Balance 

This note addresses the division of gun power and helicity between the open 
line volume and the closed flux surface volume in a steady state flux core 
spheromakl. Our assumptions are that fine scale turbulence maintains each region 
close to a Taylor state, poj = LB. 

The gun region that feeds these two volumes surrounded by a flux conserver 
is shown topologicaly below. (The actual geometry is toroidal). Flux and current 
from the magnetized gun flow on open lines around the entire closed surface 
containing the spheromak. The gun current flows down the potential gradient, the 
potential difference between the two ends of each line being the gun voltage. Here, 
the gun voltage excludes the sheath drops at each end. 

When these volumes have different values of h (ratio of p,B-*joB in each 
region) in the open line volume Vi and the closed spheromak volume V2 the 
efficiency of transferring the gun power to the spheromak to sustain the ohmic loss 
is the h-ratio of these regions, in the limit V1 << V2. This result follows immediately 
from helicity balance in that limit. Here we give an accounting of all the gun power, 
and do not assume a small edge (open line) region. 

‘“cl 

+“g 

Helicitv Conservation 

The rate of loss of helicity (K) in the spheromak (volume 2) and ohmic power 
loss there are related. Using subscript s for the spheromak, 

dK.s 
-dT= J 2EoBdV E Ks =- we* K 

s 
zh cl0 

Poh = J hs dKs E*jdV = $J2E.BdV = ~__ 
21~0 dt 



We’ve assumed h is constant to take it outside the power integral of Eaj, and 
ignored + and - signs because it is understood when helicity and power are gained 
or lost. Using subscript g for the gun, it provides helicity at the rate, 

!!!?fkl 2VY dt = cl 

defining the time x0. 
dK 

If volume 1 is small, by conservation of helicity (% = 2) we 

find 
b 

Poh = - Pgun 
%I 

If volume 1 is not small we treat each region using distinct values of resistivity 
rt, helicity K, and h. We assume uoJ1 = hlB1 and uoJ2 = h2B2 and that the gun 
feeds region 1. Our model is oversimplified by assuming constant h-values in each 
region and a step function drop from region 1 to region 2. The helicity loss and 
ohmic powers are; 

and g& 
dt 

=- z”,’ = 2 (Poh)2 

with ?;a = I-JO 

ml&x* * 
The gun supplies the total helicity to maintain a steady state and 

its generation time constant is x0; 

dkot 
dt = 2vgw, 

Since helicity is conserved, 

Kl+Kz KI K2 =--- - + 

2PO KI + K2 -- 
Xl 

Pgun = 
70 

TO Tl T2 

This equation determines zo, 

1 1 KI K2 
; = K, +K2 {;+;} 

Power Balance 

We can use this result to compute the ratios of ohmic power and gun power; 

KlK;K2 > = [I +z 1-l 
F2 ~ (Poh)2 = ‘% 9 K2 

Pgun ,c2 hl K-I +K2 I= 
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The sum is 

F, + F2 = 
1 h2 

W2 + K271 
UW2 + ~K271I 

If the volume of region 1 shrinks to zero (Kl = 0, z. = ~2) the ohmic power in region 2 

x2 is - P,, our first result. Here, Ka = 
Xl I 

%X2 --dVa. 
ha 

Now let us balance the gun power with losses inside the closed volume. In 
what follows we assume there is a non-zero mean value of the products E.B and 
joE which determine helicity loss and power loss respectively. First, the flow of 
power into region 1 is along the open lines, where there is an electric field 
consisting of the dynamo field Edynl (which may or may not time average to zero) 
and the ohmic field ql jl. There is a flow of power across the separatrix surface P2 
that feeds the dynamo in that region. So we can equate the inward flow of power 
from the gun to loss of power in the volume plus flow of power out of region 1 into 
region 2; 

Pg = Jjl+dVl + p2 = Jjdk,dvl + Jqljl*dVl + ~2 

That dynamo in region 2 sustains the field against ohmic losses in region 2 that 
would otherwise cause the stored energy to decay. 

P* = J j2aEdyn2dV2 = J n2j2*dV2 

Adding these and using the fractions of gun power going to ohmic heating, 

Pg(l - h - F2) = JjlGynv.W 

By this construct, the balance of the gun power, above the resistive loss by electron 
flow, goes to the dynamo in region 1. This power first goes into waves or MHD 
modes but eventually into the plasma ions and/or electrons according to details of 
the processes that try to maintain a Taylor state. 

The powers above can be viewed as inputs; the gun power provides the 
input for dynamo power and ohmic heat. One can also write diffferent equations 
that distribute this input heat and wave power to various loss channels, such as 
radiation, power to restore charge exchange ion losses, conduction or convection 
loss, etc. One needs to understand the dynamo power in more detail to be able to 
write a detailed power balance in region 1. Which losses are driven by the 
collisions of electrons whose flow is sustained by the potential difference between 
the gun and dynamo, and which are driven by the fully evolved dynamo? In region 
2, the dynamo power to the plasma is assumed to be converted fully to maintaining 
the ohmic current, which subsequently supplies the power for the various loss 
channels within that volume. 
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Dvnamo Transport 

We assumed so far that the h-values were constant in each region, with an 
infinite gradient at the boundary of the two regions. In reality there is some gradient 
everywhere, and integrals involving j use u ,-lhB so that h cannot be taken outside 
of those integrals as we have done. To understand better the role of the h-gradients 
let us use the mean of a product of the dynamo electric field and magnetic field 
suggested by Hooper* from the work of Boozers and Strauss”. This suggestion is 
valid for small-amplitude fluctuations, and is a generic model of the dynamo 

KB* 
containing the h-gradient and K, a hyper-resistivity; Edyn*B = - V l {K Vh}. Then, 

a calculation of the dynamo power loss in a volume V is 

J jaEdyndV = % f%Ed,,,,dV = - 
s 

i’ V 
h KB* =- ' &yVhW + 

KB* Vh 
I'oVh). KdV 

If we first apply this result to the entire volume inside the flux conserver, the 
first integral can be converted to a surface term which is zero on the walls since Vh 
is zero there. There are two wall surfaces;one where the gun flux enters the 
volume and the remainder where the flux is parallel to the wall. In either region, Vh 

is zero at the wall. The remaining term can be written 
1 

Kj* m2 
___ dV, which 

?L* 
suggests that the strength of the dynamo in a given spot is inversely proportional to 
the square of the gradient length there. 

Next we apply this to volume 1, where there are two kinds of surfaces, the flux 
conserver and the separatrix surface between regions. The surface integral is not 
zero on the latter, so that our power P2 that flows into region 2 is proportional to Vh 
on that surface. With S1 the common surface connecting the two regions, 

P~=~337l~,}dS, and Pdynl = ____ s Kj,2 Evh112 dV 
?L,* ' 

If there is a gradient on the surface S1 then there will a dynamo power Pdyn2 that 
was negelected above in equating P2 to (P&)2. 

These results are presented only to qualitatively understand power density 
and flow as they relate to h-gradients. The concept of hyper-resistivity may not be 
fully applicable here. And, we point out the obvious, that the calculations of this 
note are for axisymmetric ideal spheromaks kept at the Taylor state by fine grain 
turbulence. The calculations are done for the purpose of better understanding the 
gun power balance, not for understanding the physics of spheromaks driven by 
large amplitude low mode number (both axisymmetric and non-axisymmetric) 
instabilities. 
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Appendix 

We’ve used the relationship between power and helicity rate for regions of 
h dK 

Constant h , Poh = ___ __ 
21-10 dt 

dependent on the guage invariant form of helicity, 

K 0= jA.BdV =jh-lB.BdV = h-‘(2poW,& (h = constant) 

In steady state the loss of helicity and the rate at which magnetic energy is 

converted to ohmic losses can be equated, 

Although the separatrix boundary between regions 1 and 2 is not a 
conductor, we assume that the mean magnetic fields lie in flux surfaces so that Bon 
= 0 on that surface. The regions are simply connected and the helicity K. is gauge 
invariant, and helicity can be defined in each region. 

Nonetheless, we could use another form for helicity which is always gauge 
invariant’, K = K. - 4A.d II, 4A.d QT. Here, the first closed path integra.1 is the short 
way (poloidal) around a flux surface boundary (B” = 0), and the second is the long 
way around (toroidal). Using the separatrix boundary surface to evaluate them, the 
toroidal flux inside the separatrix (region 2) is @T = k4A.d Qp. Also, h$A.dQT = 

4B.d QT = 2nRBT (note that RBT is constant, so the toroidal path can be taken 

anywhere on the flux surface). Now, though hK and 2poWm are related differently 
dK 

than is hKo, our integrals are constant during equilibrium so -dt- can be related 

directly to ohmic power. 
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